
WWW.QUANTUM-MACHINES.CO|INFO@QUANTUM-MACHINES.CO

TUTORIAL

Introduction to Digital
Filters 01:
First things FIRst
Finite Impulse Response (FIR) filters delay and correct samples using
only the input signal and without consideration of the output.

http://WWW.QUANTUM-MACHINES.CO
mailto:INFO%40QUANTUM-MACHINES.CO?subject=

WWW.QUANTUM-MACHINES.CO|INFO@QUANTUM-MACHINES.CO

To control qubits we need to manipulate electrical
signals – this is the business of quantum control.
We need to generate the right signal shape, setting
both its nominal voltage value and the exact time
at which it occurs. This is not always an easy task
because… well, life never is.

We are limited by the properties of our entire
signal path, from the signal source to the Quantum
Processing Unit (QPU) and back to the control
hardware. This signal path will introduce delay and
dispersion (i.e. frequency-dependent response),
thus distorting the shape of our signals and
affecting the result.

Because we use a digital processor to generate
and manipulate signals, we have at our disposal

A digital filter takes signal samples, one nano-
second at a time (or some other time resolution
depending on the system), and performs
mathematical manipulations on them. You can
think about it as a long stream of numbers that
can be multiplied by some (real) coefficients.
In the lingo of digital signal processing, these
coefficients are called “taps”. In the image below,

the enormous flexibility and power of digital filters
to condition our signal to better suit our needs.
Digital filter design is a topic in and of itself, and
while we can not provide a full overview here, we
will cover some of the basics of digital filter usage
with the Quantum Orchestration Platform (QOP).

The QOP supports two types of filters: Finite
Impulse Response (FIR) and Infinite Impulse
Response (IIR). FIR filters delay and correct
samples using only the input signal and without
consideration of the output. In other words,
they perform a feed-forward operation. On the
other hand, an IIR filter modifies the signal with
dependence on both input and output, meaning
it performs feedback as well. In this introductory
post, we will only cover FIR filters.

WHAT ARE DIGITAL FILTERS ANYWAY?

the signal values x[n] are delayed by a single
time step at each z-1 block, multiplied by the bi
coefficients (the filter taps), and summed together
to produce the filtered signal output values –y[n].
If you don’t know the z−1 notation, feel free to
ignore it for now (if you are really curious, it’s the
z-transform representation), you need only care for
the fact that it delays everything by one-time step.

http://WWW.QUANTUM-MACHINES.CO
mailto:INFO%40QUANTUM-MACHINES.CO?subject=
https://en.wikipedia.org/wiki/Z-transform

WWW.QUANTUM-MACHINES.CO|INFO@QUANTUM-MACHINES.CO

Now that we are convinced it’s pretty easy to
delay a signal by an integer number of time steps,
we would like to know: can we create a filter that
produces a non-integer delay?

First, let’s get a bit of intuition for this. The basic
idea is that we are taking advantage of our vertical
resolution (in voltage) to play, at each time step,
the value appropriate for the slightly (sub-ns)
delayed signal. At a given time step, instead of
playing the voltage appropriate for a gaussian

The filter in the image above modifies the signal
depending only on past samples. Mathematically,
filters could depend on any value of the signal –
past, present, or future. However, in practice, only
causal filters, which generate an output depending
only on current and past signal values, may be
implemented.

Filters that depend on a finite number of past
signal values are called finite impulse response
(FIR) filters. Filters with an infinite impulse response
(IIR) may be implemented using feedback taps.
This type of filter is also supported in QUA and will
be discussed in a future post.

centered at 7ns, we play the voltage appropriate
for a gaussian centered at 7.2ns. However, this can
only go so far because the hardware has a finite
output bandwidth. Because of this, if we try to
change the values too quickly those changes will
be washed out by the output effectively applying
a low-pass filter. So as long as we play pulses
compatible with the finite bandwidth of the output
(no sharp turns, please), we can introduce non-
integer delay at the (analog) output of the system.

To get a sense of how filters work, we begin by
considering the pure delay (and no distortion) of
a signal. To make things even simpler, suppose
we want to delay a signal by an integer number
of time steps, say: 5 samples. For an input x(t)
we want to get x(t−5). This can be done easily by

DELAYING A SIGNAL USING AN FIR

setting the 6th tap to 1 and all other taps to zero. In
the diagram below you can imagine the samples
going into the filter and have each sample delayed
multiple z−1 elements, eventually to reach a non-
zero tap and produce a non-zero output.

http://WWW.QUANTUM-MACHINES.CO
mailto:INFO%40QUANTUM-MACHINES.CO?subject=

WWW.QUANTUM-MACHINES.CO|INFO@QUANTUM-MACHINES.CO

How would you go about designing such a filter? The theory behind filter design can be daunting as
it includes some non-trivial mathematical steps. These steps are there because digital filters exist in
discrete time, while we are interested in the behavior (shape) of the signal in the continuous-time domain.

We will see what this means by an example. Consider a continuous-time signal at the output of the OPX+.
In general, it’s some signal of duration T which can have an output voltage between -0.5 V and 0.5V.

To generate this signal we have to calculate discretely sampled voltage values. The notation used in signal
processing is to have square brackets denoting discrete time. In addition we replace the continuous-time
index t by the discrete-time index n. Our discrete-time signal is given simply by sampling the continuous-
time signal at discrete (integer) intervals.

Our goal now is to manipulate x[n] using the digital filter such that the continuous-time signal x(t) is shifted
by some (non-integer) constant delay
x(t) x(t−δ). How do we do that? The first mathematical operation needed to design our filter uses the
discrete-time Fourier transform (DTFT). This is an operation that translates a discrete-time signal to its
finite and continuous frequency representation. Sampling the DTFT yields the discrete Fourier transform
(DFT), which is exactly the operation achieved by calling the FFT function from SciPy, MATLAB, or any of your
favorite data manipulation platforms.

With the benefit of hindsight, we anticipate that the design of the filter should begin in the frequency
domain. To that end, we first need to translate our time domain requirement to a frequency domain
representation. In the case of time-shift, this is given by Fourier transform property:

A filter can be represented in the frequency domain as multiplication by a known (complex) function,
known as the transfer function of the filter. Therefore, our exponential prefactor is exactly the filter we
want to achieve! But note, there are still some steps that need to be taken in order to translate the infinite,
continuous-time filter response, H(jω)=e−jdω, to a finite, discrete one. First, we will sample our continuous-
time filter, to get a discrete (but still infinite!) time signal. To reduce sampling errors, we will first pass the
signal through a low-pass filter (this prevents the annoying signal-processing error called aliasing). The
sampled function is then given in the discrete time-frequency domain as:

DESIGNING A FILTER WITH NON-INTEGER DELAY

FILTER DESIGN: TO THE FREQUENCY DOMAIN AND BACK

x(t):[0:T) [−½,½]

x(t) x[n]

x(t−d) e−jdωX(jω)

H(θ)=e−jdfsθ

http://WWW.QUANTUM-MACHINES.CO
mailto:INFO%40QUANTUM-MACHINES.CO?subject=

WWW.QUANTUM-MACHINES.CO|INFO@QUANTUM-MACHINES.CO

Where [0,2) is the frequency index of the signal (that we sampled in discrete time steps), and fs is the
sampling frequency (in the case of the OPX+ that is 1 GSPS). This function has an infinite representation in
the discrete-time domain which means it is not yet suitable to use as an FIR filter (which is finite in time
as we recall). To overcome this, we will first transform the signal to the time domain using the Inverse
Discrete-Time Fourier Transform (IDTFT)

where Ts= 1
fs

, is our sampling interval. Now all that’s left to do is truncate the signal to the length of our
filter. This means that the digital filter we wish to implement is no other than h[n]=sinc(nTs–d),n∈[0,N−1], where
Nis the number of our filter taps.

The ntaps parameter specifies how many frequency samples (our N from before).

Next, we place the coefficients in the qua config. The coefficients go into the analog channel section of the
configuration as follows:

After all this theoretical background, we’ve worked up quite an appetite. So let’s see how to implement a
non-integer delay in QUA.

All we need to do is to write a function that takes a delay as input and calculates the taps:

FILTERS IN QUA: LET’S GET DOWN TO BUSINESS

h[n]=sinc(nTs−d)∀n∈Z

def FIR(delay,ntaps):

 return np.sinc(np.linspace(0, ntaps-1, ntaps)-delay

"analog_outputs": {

 1: {

 "offset": +0.0,

 "filter": {"feedforward": feedforward_filter},

 },

Where feedforward_filteris a list containing the calculated coefficients. The OPX+ supports up to 40
FIR taps. This can produce up to 40 ns delay but is of course much more versatile. Once a filter has been
defined, any signal played to the affected output will be filtered.

http://WWW.QUANTUM-MACHINES.CO
mailto:INFO%40QUANTUM-MACHINES.CO?subject=

WWW.QUANTUM-MACHINES.CO|INFO@QUANTUM-MACHINES.CO

We chose to showcase these shifts on a Gaussian pulse. This is no accident. Non-integer shifts are better
suited for signals with a low-frequency band. Remember that when you design a pulse to be played in
hardware, there is always some limited output bandwidth to keep you under the speed limit, so signals
that change too quickly aren’t suitable filter candidates anyway.

Filters are important in conditioning the pulses which a control system can create. We have only touched
the tip of the iceberg here and there is a lot more that can be done. For example, correct usage of filters
can allow you to correct the group dispersion (read: distortion) in a pulse due to the bandwidth of the
transmission line going into your fridge and connecting your qubit to the outside world. Correct usage
of this tool is therefore essential in creating high fidelity qubit operations. You can find interesting usage
examples in our Github repository. In the next post in the series, we will dive deeper into filter design,
learning about IIR filters and the added power they bring.

SUMMARY

Below you can see the resulting simulated shifted signal. We simulate an unshifted signal in green, a
signal shifted by 7.1ns in blue and a signal shifted by 7.9 ns in orange.

http://WWW.QUANTUM-MACHINES.CO
mailto:INFO%40QUANTUM-MACHINES.CO?subject=
https://github.com/qua-platform/qua-libs/tree/main/

WWW.QUANTUM-MACHINES.CO|INFO@QUANTUM-MACHINES.CO

RUN STATE OF THE ART EXPERIMENTS WITH EASE

OPX+

PULSE PROCESSING UNIT
ACHIEVE THE FASTEST TIME TO RESULTS

QUA
CODE QUANTUM PROGRAMS SEAMLESSLY

The Quantum
Orchestration Platform
AN END TO END QUANTUM CONTROL SOLUTION TO DRIVE
THE FASTEST TIME TO RESULTS, AT ANY SCALE

An architecture designed from the ground up for quantum
control, the OPX+ lets you run the quantum experiments of your
dreams right from the installation. With a quantum feature-
rich environment, the OPX+ is built for scale and performance.
Now, you can run the most complex quantum algorithms and
experiments in a fraction of the development time.

Within the OPX+ is the Pulse Processing Unit, QM’s leading-edge
quantum control technology. Progress with incomparable speed
and extreme flexibility. Run even the most demanding experiments
efficiently, with the fastest runtimes and the lowest latencies in
the industry, including quantum protocols that require real-time
waveform generation, real-time waveform acquisition,
real-time comprehensive processing, and control flow.

Implement the protocols of your wildest dreams as easily as writing
pseudocode. Designed for quantum control, QUA is the first universal
quantum pulse-level programming language. Code even the most
advanced programs and run them with the best possible performance.
Natively describe your most challenging experiments, from complex
AI-based multi-qubit calibrations to multi-qubit quantum error
correction.

*All of the information above is also valid for the OPX

http://WWW.QUANTUM-MACHINES.CO
mailto:INFO%40QUANTUM-MACHINES.CO?subject=

WWW.QUANTUM-MACHINES.CO|INFO@QUANTUM-MACHINES.CO

About Quantum Machines
Quantum Machines (QM) drives quantum breakthroughs that accelerate the
path towards the new age of quantum computing. The company’s Quantum
Orchestration Platform (QOP) fundamentally redefines the control and operations
architecture of quantum processors.

The full-stack hardware and software platform is capable of running even the most
complex algorithms right out of the box, including quantum error correction, multi-
qubit calibration, and more. Helping achieve the full potential of any quantum
processor, the QOP allows for unprecedented advancement and speed-up of
quantum technologies as well as the ability to scale into the thousands of qubits.
Visit us at: www.quantum-machines.co

*The information contained in this document is confidential and intended solely for its addressees. The information is the property of QM

Technologies Inc. (“QM”) and may contain legally privileged information. QM may make changes to specifications and product descriptions at

any time, and this document does not represent a commitment on the part of QM, but is supplied solely for allowing the intended recipients

hereof to consider a general business engagement with QM. This information is subject to change without notice. © QM Technologies Inc.

If you wish to learn more:
info@quantum-machines.co

http://WWW.QUANTUM-MACHINES.CO
mailto:INFO%40QUANTUM-MACHINES.CO?subject=
http://www.quantum-machines.co
mailto:info%40quantum-machines.co?subject=

